Stanford University
coral reef

Stanford Earth Matters

Science and insights for people who care about Earth, its resources and its environment

Get Stanford Earth Matters stories delivered to your inbox each month.

Subscribe

About Stanford Earth Matters

Ocean storm

Undersea origins of Earth's mysterious Love waves

Supercomputer simulations of planetary-scale interactions show how ocean storms and the structure of Earth’s upper layers together generate much of the world’s seismic waves. Decoding the faint but ubiquitous vibrations known as Love waves could yield insights about Earth’s storm history, changing climate and interior.

Earthquake concept

The science behind earthquakes

A collection of research and insights from Stanford experts on where and how earthquakes happen, why prediction remains elusive, advances in detection and monitoring, links to human activities, how to prepare for "The Big One," and more.

Tottori skyline

AI detects hidden earthquakes

Tiny movements in Earth’s outermost layer may provide a Rosetta Stone for deciphering the physics and warning signs of big quakes. New algorithms that work a little like human vision are now detecting these long-hidden microquakes in the growing mountain of seismic data.

Cracked road

How earthquake swarms arise

A new fault simulator maps out how interactions between pressure, friction and fluids rising through a fault zone can lead to slow-motion quakes and seismic swarms.

Tibetan Plateau

Seismic data explains continental collision beneath Tibet

New imagery reveals the causes of seismic activity deep beneath the Himalaya region, contributing to an ongoing debate over the continental collision process when two tectonic plates crash into each other.

Loon balloon in flight

Gravity wave insights from internet-beaming balloons

A better understanding of how gravity waves in the upper atmosphere interact with the jet stream, polar vortex and other phenomena could be key to improved weather predictions and climate models.

Soil

New soil models may ease atmospheric CO2, climate change

An international, interdisciplinary group of scientists propose the creation of new soil carbon-persistence models through the lens of “functional complexity” – the interplay between time and space in soil carbon’s changing molecular structure that drives carbon sequestration.

Avalanche

Predicting the unpredictable

Researchers combined avalanche physics with ecosystem data to create a computational method for predicting extreme ecological events. The method may also have applications in economics and politics.

Crater impact illustration

A steaming cauldron follows the dinosaurs’ demise

The Chicxulub impact crater that is linked to the extinction of the dinosaurs hosted a hydrothermal system that chemically and mineralogically modified more than 100,000 cubic kilometers of Earth’s crust, according to new research.

Lava lake

Hunting down clues to Earth's early molten days

Scientists are still trying to piece together how Earth transformed from a molten planet to one with living creatures walking around on its silicate mantle and crust. Hints lie in the strange ways materials behave under extreme temperatures and pressures.

Deteriorated road

Seismic map of North America reveals geologic clues, earthquake hazards

A new stress map that reveals the forces acting on the planet’s crust will contribute to safer energy exploration, updated seismic hazard maps and improved knowledge about the Earth.

Hot Jupiter

What other planets can teach us about Earth

Scientists exploring space are bringing back insights about Earth’s deep past, its complicated relationship with life and our planet’s future.

Diamonds

A better way to build diamonds

With the right amount of pressure and surprisingly little heat, a substance found in fossil fuels can transform into pure diamond.

Amazon rainforest

Where in the world can plants best soak up carbon emissions?

Plants around the world are growing at a slower than expected. Researchers say insufficient nutrients in the soil may be the culprit. A new world nutrient map provides a framework for predicting what areas around the world will be successful carbon sinks in the future. 

 

water abstract

Microbial DNA can reveal water’s underground origins

Stanford researchers have sequenced microbial communities in samples of reservoir fluids to identify where water traveled through underground networks and pathways.

2019 text

Editor's picks: Top 10 Stanford Earth Matters stories of 2019

In a roundup that spans energy, geology, geophysics and Earth systems, here are some of the most interesting, high-impact and popular research stories from 2019.

Satellite view of Hurricane Harvey

Damaging rains from hurricanes can be more intense after winds begin to subside

New research shows rains that occur after a hurricane has weakened may be more intense than when the storm is at its strongest.

Greenland

Flatten Greenland, and the Atlantic jet stream goes with it

Building off previous research showing the Atlantic jet stream hovers between three preferred latitudes, researchers found the topography of Greenland is responsible for its northernmost position.

IconsList of icons used on the sitemaillinkedindouble carrot leftarrow leftdouble carrotplayerinstagramclosecarrotquotefacebooktwitterplusminussearchmenuarrowcloudclock